
Package: shades (via r-universe)
September 12, 2024

Version 1.4.0
Date 2019-08-02
Title Simple Colour Manipulation
Author Jon Clayden
Maintainer Jon Clayden <code@clayden.org>

Description Functions for easily manipulating colours, creating colour
scales and calculating colour distances.

Suggests testthat, covr, ggplot2
Enhances colorspace
Encoding UTF-8
License BSD_3_clause + file LICENCE

URL https://github.com/jonclayden/shades

BugReports https://github.com/jonclayden/shades/issues

RoxygenNote 6.1.1
Repository https://jonclayden.r-universe.dev
RemoteUrl https://github.com/jonclayden/shades
RemoteRef HEAD
RemoteSha 23e805ac4c6ad0834d5567d34e846cf3d541021d

Contents
addmix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
coords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
dichromat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
shade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
swatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1

https://github.com/jonclayden/shades
https://github.com/jonclayden/shades/issues


2 addmix

Index 13

addmix Colour mixtures

Description

These functions allow colours to be mixed in any colour space, either additively (like light) or
subtractively (like paint). The infix form %.)% is an alternative for addmix, and %_/% for submix,
with the mixing amount being fixed to 1 in these cases.

Usage

addmix(base, mixer, amount = 1, space = NULL)

submix(base, mixer, amount = 1, space = NULL)

X %.)% Y

X %_/% Y

Arguments

base, X A vector of base colours, or a palette function or scale.

mixer, Y A vector of colours to mix in.

amount The amount of each colour to mix in, relative to the amount of the base. This
will be recycled to the length of mixer.

space A string giving the space in which to perform the mixing, or NULL. In the latter
case, the space of base will be used.

Value

New colours of class "shade", or a new palette function.

Author(s)

Jon Clayden <code@clayden.org>

Examples

addmix(c("red","green","blue"), "red")
submix(c("cyan","magenta","yellow"), "cyan")



complement 3

complement Complementary colours

Description

This function returns the complement of its argument, the "opposite" colours in the specified space.

Usage

complement(shades, space = NULL)

Arguments

shades One or more colours, in any suitable form (see shade), or a palette function or
scale.

space The space in which to take the complement.

Value

New colours of class "shade", or a new palette function.

Examples

complement("cyan")
complement("cyan", space="HSV")
complement("cyan", space="Lab")

coords Retrieve the coordinates of a colour vector

Description

This function retrieves the coordinates of a colour vector’s elements, within whatever space it is
currently defined.

Usage

coords(x, ...)

Arguments

x An R object.

... Additional arguments to methods.



4 dichromat

Value

A matrix giving colour coordinates in the relevant space, one colour per row. Columns are typically
named.

Author(s)

Jon Clayden <code@clayden.org>

Examples

coords("red")

dichromat Simulate colour appearance for dichromats

Description

This functions manipulates colours to simulate the effects of different kinds of colour blindness, and
specifically dichromacy, in which only two of the usual three types of photoreceptors are present.
There are three types, corresponding to the loss of red, green or blue photoreceptors.

Usage

dichromat(shades, type = c("protanopic", "deuteranopic", "tritanopic",
"none"))

Arguments

shades One or more colours, in any suitable form (see shade).

type The type of colour vision deficiency to simulate: protanopia (red blindness),
deuteranopia (green blindness) or tritanopia (blue blindness). The latter is the
rarest in the population. "none" is also available, as a pass-through option.
Abbrevations, such as the first letter, may be used, and multiple values are ac-
ceptable.

Value

New colours of class "shade" in LMS space, representing projections of the original shades onto a
submanifold appropriate to the type of dichromacy being simulated.

Author(s)

Jon Clayden <code@clayden.org>

References

Brettel, H., Viénot, F. and Mollon, J.D. (1997). Computerized simulation of color appearance for
dichromats. Journal of the Optical Society of America A 14(10):2647-2655.



distance 5

Examples

dichromat(c("red", "green", "blue"))

distance Colour distance

Description

This function calculates a distance measure that aims to quantify the perceptual difference between
a vector of colours and a reference colour. The measure in question is the CIE Delta E (2000),
which is calculated based on colour coordinates in Lab space.

Usage

distance(shades, reference)

Arguments

shades One or more colours, in any suitable form (see shade).

reference A single reference colour.

Value

A numeric vector of distances.

Author(s)

Jon Clayden <code@clayden.org>

References

http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE2000.html

Examples

distance(c("red","green","blue"), "red")

http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE2000.html


6 gradient

gradient Colour gradients

Description

This function returns a set of colours interpolating between the specified key colours, equally sepa-
rated in the specified space.

Usage

gradient(shades, steps = NULL, space = NULL)

Arguments

shades Two or more colours, in any suitable form (see shade), or a named colour map
such as "viridis".

steps An integer giving the number of shades required in the palette. If NULL, a func-
tion will instead be returned that takes this argument.

space The colour space to traverse. Defaults to the current space of shades, or "Lab"
for the matplotlib colour maps, or "sRGB" otherwise.

Details

The key colours may be specified explicitly, or else a built-in colour map may be used. The maps
available are currently those developed for Python’s matplotlib 2.0, namely "magma", "inferno",
"plasma" and "viridis", and certain ColorBrewer palettes, namely "Blues", "Reds", "YlOrRd"
(yellow-orange-red) and "RdBu" (red-grey-blue, a balanced diverging scale).

Value

A character vector of class "shade" containing the gradient elements in the specified space, or a
palette function.

Author(s)

Jon Clayden <code@clayden.org>

References

http://bids.github.io/colormap/ for the matplotlib colour maps; http://colorbrewer2.
org for the ColorBrewer ones.

Examples

gradient(c("red","blue"), 5)
gradient(c("red","blue"), 5, space="Lab")
gradient("viridis", 5)

http://bids.github.io/colormap/
http://colorbrewer2.org
http://colorbrewer2.org


saturation 7

saturation Query or change colour properties

Description

These functions obtain the value of a colour property, or modify it. They will convert between
colour spaces as required, but the RGB representation will be appropriately updated in the result.

Usage

saturation(shades, values = NULL)

brightness(shades, values = NULL)

lightness(shades, values = NULL)

chroma(shades, values = NULL)

hue(shades, values = NULL)

opacity(shades, values = NULL)

delta(...)

scalefac(...)

recycle(...)

Arguments

shades One or more colours, in any suitable form (see shade), or a palette function or
scale.

values New values for the property in question, with NA as a pass-through value that
will leave the property as-is. If NULL, the current value(s) will be returned. May
also be a function computing new values from old ones, such as delta, which
adds its argument, or scalefac, which multiplies it.

... Arguments to replacement functions delta, scalefac and recycle, which will
be concatenated.

Details

Brightness and lightness differ technically, in the sense that one is absolute and the other is relative.
Intuitively, a grey square on white paper is brighter under bright sunlight than in a dark room, but
its lightness (relative to the white around it) is constant between conditions. In these functions,
brightness is “value” in HSV space and is between 0 and 1, while lightness is defined in Lab space
and is between 0 and 100. Saturation and chroma are also related. Hue is defined in HSV space,
with red at 0º (and 360º), which is generally the most familiar parameterisation.



8 shade

Value

Current colour property values, or new colours of class "shade". If shades is a function, the result
will be a new function that wraps the old one and modifies its return value accordingly.

Note

The colour property functions are vectorised over both of their arguments, such that the dimensions
of the result will be c(length(values),dim(shades)). However, the recycle function can be
used to suppress the usual dimensional expansion, and instead follow R’s standard recycling rule.

Author(s)

Jon Clayden <code@clayden.org>

Examples

saturation(c("papayawhip","lavenderblush","olivedrab"))

saturation("papayawhip", 0.7)
saturation("papayawhip", delta(0.2))
saturation("papayawhip", scalefac(1.5))

saturation(c("red","green"), c(0.4,0.6))
saturation(c("red","green"), recycle(0.4,0.6))

shade The shade class

Description

Objects of class "shade" are simply standard R character vectors representing one or more 8-bit
(s)RGB colours in CSS-like hex format, but with extra attributes giving the current colour space
and coordinates.

Usage

shade(x, ...)

## S3 method for class 'shade'
shade(x, ...)

## S3 method for class 'color'
shade(x, ...)

## S3 method for class 'matrix'
shade(x, space = "sRGB", alpha = NULL, ...)

## S3 method for class 'character'



shade 9

shade(x, ...)

## Default S3 method:
shade(x, ...)

## S3 method for class 'shade'
print(x, ...)

## S3 method for class 'shade'
x[i]

## S3 replacement method for class 'shade'
x[i] <- value

## S3 method for class 'shade'
c(...)

## S3 method for class 'shade'
rep(x, ...)

## S3 method for class 'shade'
rev(x)

## S3 method for class 'shade'
x == y

## S3 method for class 'shade'
x != y

## S3 method for class 'equal.shade'
all(target, current, hexonly = FALSE, ...)

Arguments

x, y R objects, or "shade" objects for methods.

... Additional parameters to methods. For c, any number of colours in any accept-
able form.

space For a matrix, the space in which coordinates are being provided.

alpha For a matrix, an associated vector of opacity values between 0 and 1, if required.

i An index vector.

value A vector of replacement colours.

target, current Shade vectors to compare.

hexonly If TRUE, compare only on the basis of the hex strings. Otherwise test for equal
coordinates.



10 space

Details

Comparison between "shade" objects x and y is achieved by converting y (the second argument)
into the colour space of x and then comparing coordinates, after any clipping.

Value

A character vector of class "shade", with additional attributes as follows.

space A string naming a color space.

coords A matrix giving colour coordinates in the relevant space, one colour per row.

Note

When concatenating, shades that are all from the same space will remain in that space, but shades
from different spaces will be warped to “XYZ” space.

Author(s)

Jon Clayden <code@clayden.org>

Examples

s <- shade(c("red", "green", "blue"))
s[1]
s[1] <- "pink"

space Retrieve the space of a colour vector

Description

This function retrieves the colour space in which its argument is currently defined.

Usage

space(x, ...)

Arguments

x An R object.

... Additional arguments to methods.

Value

A string naming a colour space.



swatch 11

Author(s)

Jon Clayden <code@clayden.org>

Examples

space("red")

swatch Simple colour swatches

Description

This function provides a simple visualisation of a colour series as a series of boxes against the
specified background colour. If the input has more than one dimension then the boxes will be
arranged in a grid (flattening further dimensions after the second).

Usage

swatch(x, bg = "white", ...)

Arguments

x One or more colours, in any suitable form (see shade).

bg A background colour.

... Additional arguments (currently unused).

Author(s)

Jon Clayden <code@clayden.org>

Examples

swatch(c("red", "green", "blue"))



12 warp

warp Shift colours between spaces

Description

This function shifts the current colour space of its arguments to the specified space, returning a new
object of class "shade".

Usage

warp(x, space)

Arguments

x An R object which can be coerced to class "shade".
space A string naming the new space.

Details

Valid names for spaces are currently those supported by the convertColor function, namely “sRGB”,
“Apple RGB”, “CIE RGB”, “XYZ”, “Lab” and “Luv”; plus “RGB” (which is treated as an alias for
“sRGB”), “HSV”, “LCh” and “LMS”. Case is not significant.

Value

A new object of class "shade".

Note

LMS space, used for chromatic adaptation and simulating colour blindness, is not uniquely defined.
Here we use the (linearised) Bradford transform, obtained by Lam (1985) and used widely in ICC
colour profiles and elsewhere, to transform to and from CIE XYZ space.

R uses the D65 standard illuminant as the reference white for the “Lab” and “Luv” spaces.

Author(s)

Jon Clayden <code@clayden.org>

References

Lam, K.M. (1985). Metamerism and colour constancy. PhD thesis, University of Bradford.

See Also

convertColor

Examples

warp("red", "HSV")



Index

!=.shade (shade), 8
==.shade (shade), 8
[.shade (shade), 8
[<-.shade (shade), 8
%.)% (addmix), 2
%_/% (addmix), 2

addmix, 2
all.equal.shade (shade), 8

brightness (saturation), 7

c.shade (shade), 8
chroma (saturation), 7
complement, 3
convertColor, 12
coords, 3

delta (saturation), 7
dichromat, 4
distance, 5

gradient, 6

hue (saturation), 7

lightness (saturation), 7

opacity (saturation), 7

print.shade (shade), 8

recycle (saturation), 7
rep.shade (shade), 8
rev.shade (shade), 8

saturation, 7
scalefac (saturation), 7
shade, 3–7, 8, 11
shades (shade), 8
space, 10
submix (addmix), 2

swatch, 11

warp, 12

13


	addmix
	complement
	coords
	dichromat
	distance
	gradient
	saturation
	shade
	space
	swatch
	warp
	Index

